324 research outputs found

    Quantitative Tverberg theorems over lattices and other discrete sets

    Full text link
    This paper presents a new variation of Tverberg's theorem. Given a discrete set SS of RdR^d, we study the number of points of SS needed to guarantee the existence of an mm-partition of the points such that the intersection of the mm convex hulls of the parts contains at least kk points of SS. The proofs of the main results require new quantitative versions of Helly's and Carath\'eodory's theorems.Comment: 16 pages. arXiv admin note: substantial text overlap with arXiv:1503.0611

    Quantitative combinatorial geometry for continuous parameters

    Get PDF
    We prove variations of Carath\'eodory's, Helly's and Tverberg's theorems where the sets involved are measured according to continuous functions such as the volume or diameter. Among our results, we present continuous quantitative versions of Lov\'asz's colorful Helly theorem, B\'ar\'any's colorful Carath\'eodory's theorem, and the colorful Tverberg theorem.Comment: 22 pages. arXiv admin note: substantial text overlap with arXiv:1503.0611

    Quantitative Tverberg, Helly, & Carath\'eodory theorems

    Full text link
    This paper presents sixteen quantitative versions of the classic Tverberg, Helly, & Caratheodory theorems in combinatorial convexity. Our results include measurable or enumerable information in the hypothesis and the conclusion. Typical measurements include the volume, the diameter, or the number of points in a lattice.Comment: 33 page

    Helly numbers of Algebraic Subsets of Rd\mathbb R^d

    Full text link
    We study SS-convex sets, which are the geometric objects obtained as the intersection of the usual convex sets in Rd\mathbb R^d with a proper subset SRdS\subset \mathbb R^d. We contribute new results about their SS-Helly numbers. We extend prior work for S=RdS=\mathbb R^d, Zd\mathbb Z^d, and Zdk×Rk\mathbb Z^{d-k}\times\mathbb R^k; we give sharp bounds on the SS-Helly numbers in several new cases. We considered the situation for low-dimensional SS and for sets SS that have some algebraic structure, in particular when SS is an arbitrary subgroup of Rd\mathbb R^d or when SS is the difference between a lattice and some of its sublattices. By abstracting the ingredients of Lov\'asz method we obtain colorful versions of many monochromatic Helly-type results, including several colorful versions of our own results.Comment: 13 pages, 3 figures. This paper is a revised version of what was originally the first half of arXiv:1504.00076v

    Beyond Chance-Constrained Convex Mixed-Integer Optimization: A Generalized Calafiore-Campi Algorithm and the notion of SS-optimization

    Full text link
    The scenario approach developed by Calafiore and Campi to attack chance-constrained convex programs utilizes random sampling on the uncertainty parameter to substitute the original problem with a representative continuous convex optimization with NN convex constraints which is a relaxation of the original. Calafiore and Campi provided an explicit estimate on the size NN of the sampling relaxation to yield high-likelihood feasible solutions of the chance-constrained problem. They measured the probability of the original constraints to be violated by the random optimal solution from the relaxation of size NN. This paper has two main contributions. First, we present a generalization of the Calafiore-Campi results to both integer and mixed-integer variables. In fact, we demonstrate that their sampling estimates work naturally for variables restricted to some subset SS of Rd\mathbb R^d. The key elements are generalizations of Helly's theorem where the convex sets are required to intersect SRdS \subset \mathbb R^d. The size of samples in both algorithms will be directly determined by the SS-Helly numbers. Motivated by the first half of the paper, for any subset SRdS \subset \mathbb R^d, we introduce the notion of an SS-optimization problem, where the variables take on values over SS. It generalizes continuous, integer, and mixed-integer optimization. We illustrate with examples the expressive power of SS-optimization to capture sophisticated combinatorial optimization problems with difficult modular constraints. We reinforce the evidence that SS-optimization is "the right concept" by showing that the well-known randomized sampling algorithm of K. Clarkson for low-dimensional convex optimization problems can be extended to work with variables taking values over SS.Comment: 16 pages, 0 figures. This paper has been revised and split into two parts. This version is the second part of the original paper. The first part of the original paper is arXiv:1508.02380 (the original article contained 24 pages, 3 figures

    MHD stability and disruptions in the SPARC tokamak

    Get PDF
    SPARC is being designed to operate with a normalized beta of beta(N) = 1.0, a normalized density of n(G) = 0.37 and a safety factor of q(95) approximate to 3.4, providing a comfortable margin to their respective disruption limits. Further, a low beta poloidal beta(p) = 0.19 at the safety factor q = 2 surface reduces the drive for neoclassical tearing modes, which together with a frozen-in classically stable current profile might allow access to a robustly tearing-free operating space. Although the inherent stability is expected to reduce the frequency of disruptions, the disruption loading is comparable to and in some cases higher than that of ITER. The machine is being designed to withstand the predicted unmitigated axisymmetric halo current forces up to 50 MN and similarly large loads from eddy currents forced to flow poloidally in the vacuum vessel. Runaway electron (RE) simulations using GO+CODE show high flattop-to-RE current conversions in the absence of seed losses, although NIMROD modelling predicts losses of similar to 80 %; self-consistent modelling is ongoing. A passive RE mitigation coil designed to drive stochastic RE losses is being considered and COMSOL modelling predicts peak normalized fields at the plasma of order 10(-2) that rises linearly with a change in the plasma current. Massive material injection is planned to reduce the disruption loading. A data-driven approach to predict an oncoming disruption and trigger mitigation is discussed

    A whole systems approach to integrating physical activity to aid mental health recovery – Translating theory into practice

    Get PDF
    Improving health outcomes for people with severe mental illness (SMI) through increased physical activity (PA) on a large scale remains an elusive goal. There is promising evidence that increasing levels of PA in people with SMI can improve psychological and physical health outcomes. However, SMI is associated with reduced levels of physical activity and more sedentary behaviour than is usual in people without SMI. Increasing PA and reducing sedentary behaviour among people with SMI is a complex process, as there are drivers of these behaviours at the individual, household, community and policy levels. Examples of these include the symptoms associated with SMI, poverty, unemployment, social isolation and stigma. Such drivers affect opportunities to take part in PA and individuals’ abilities to do so, creating negative reinforcing loops of behaviours and health outcomes. Most previous approaches to PA for this population have focused largely on individual behaviour change, with limited success. To increase levels of PA effectively for people with SMI at scale also requires consideration of the wider determinants and complex dynamic drivers of PA behaviour in this population. This position paper sets out a rationale and recommendations for the utilisation of whole systems approaches to PA in people with SMI and the improvement of physical and psychological outcomes. Such approaches should be delivered in conjunction with bespoke, individual-level interventions which address the unique needs of those with SMI

    An upgrade of the magnetic diagnostic system of the DIII-D tokamak for non-axisymmetric measurements

    No full text
    The DIII-D tokamak magnetic diagnostic system [E. J. Strait, Rev. Sci. Instrum. 77, 023502 (2006)] has been upgraded to significantly expand the measurement of the plasma response to intrinsic and applied non-axisymmetric "3D" fields. The placement and design of 101 additional sensors allow resolution of toroidal mode numbers 1 ≤ n ≤ 3, and poloidal wavelengths smaller than MARS-F, IPEC, and VMEC magnetohydrodynamic model predictions. Small 3D perturbations, relative to the equilibrium field (10(-5) < δB/B0 < 10(-4)), require sub-millimeter fabrication and installation tolerances. This high precision is achieved using electrical discharge machined components, and alignment techniques employing rotary laser levels and a coordinate measurement machine. A 16-bit data acquisition system is used in conjunction with analog signal-processing to recover non-axisymmetric perturbations. Co-located radial and poloidal field measurements allow up to 14.2 cm spatial resolution of poloidal structures (plasma poloidal circumference is ~500 cm). The function of the new system is verified by comparing the rotating tearing mode structure, measured by 14 BP fluctuation sensors, with that measured by the upgraded B(R) saddle loop sensors after the mode locks to the vessel wall. The result is a nearly identical 2/1 helical eigenstructure in both cases.S. R. Haskey wishes to thank AINSE Ltd. for providing financial assistance
    corecore